Testing species limits of non-echolocating Philippine swiftlets (Collocalia spp.) using molecular genetic data

Dale H. Clayton\(^1\) and Kevin P. Johnson\(^2\)

\(^1\)University of Utah
Department of Biology, 257 South 1400 East
Salt Lake City, UT 84112-0840
e-mail: clayton@biology.utah.edu

\(^2\)Department of Biology, University of Utah,
Salt Lake City, UT 84112-0840

Swiftlets are small, insectivorous birds that are distributed from the Indian Ocean, through southeast Asia and north Australia, to the Pacific. About 22 species of swiftlets nest in caves or other dark places, where they navigate using a crude form of echolocation (Chantler and Driessens 1995). Three additional species, which are incapable of echolocation, do not nest in the dark. The 25 species of swiftlets are considered by many authors to represent the most difficult problem in the taxonomy of birds (e.g., Mayr 1937). This is because swiftlets show extreme morphological similarity, making species limits extremely difficult to decipher. Lee et al. (1996) used DNA sequence data to show that morphologically-based species concepts are seriously flawed for swiftlets. They also showed that the echolocating species (Aerodramus spp.) are not closely related to the non-echolocating species (Collocalia spp.).

Keywords: Collocalia spp., phylogenetic relationships, morphological similarity, genetic divergence, non-echolocating, DNA sequence data, species limits
Two of the three non-echolocating species occur in the Philippines, where *C. troglodytes* is endemic and *C. esculenta* is represented by four subspecies. One of the latter, *C. e. marginata*, is considered a distinct species by some workers (Sibley and Monroe 1990). We explored species limits of the Philippine *Collocalia* by sequencing the mitochondrial DNA of *C. troglodytes* and two of the *C. esculenta* subspecies. Our results show that *C. troglodytes* and *C. esculenta* differ in their cytochrome b sequences by approximately 9%, indicating that they speciated at least 4.5 million years ago (assuming a molecular clock). We further show that *C. e. marginata* and *C. e. bagobo*, found mainly on Luzon and Mindanao, respectively, differ in their cytochrome b sequences by 2.2%, suggesting that they split over a million years ago. The sizeable differences between these subspecies support the specific status of *C. e. marginata*, since the two subspecies are more genetically distinct than are many other sister species pairs of birds. Our results raise the total number of *Collocalia* spp. to four, two of which are endemic to the Philippines. It will be interesting to acquire and sequence tissue from the remaining two Philippine subspecies of *C. esculenta*, in order to resolve further the taxonomy of this difficult, albeit fascinating group of birds.

Swiftlets are small, insectivorous birds that are distributed from the Indian Ocean, through southeast Asia and north Australia, to the Pacific. About 22 species of swiftlets nest in caves or other dark places, where they navigate using a crude form of echolocation. Three additional species, which are incapable of echolocation, do not nest in the dark. The 25 species of swiftlets are considered by many authors to represent the most difficult problem in the taxonomy of birds because their morphological similarity makes species limits extremely difficult to decipher. Previous molecular work showed that the echolocating species (*Aerodramus* spp.) are not closely related to the non-echolocating species (*Collocalia* spp.). Two of the three non-echolocating species occur in the Philippines, where *C. troglodytes* is endemic, and *C. esculenta* is represented by four subspecies.

Some of the Philippine *C. esculenta* subspecies are considered distinct species by some workers. We explored species limits of Philippine *Collocalia* by sequencing the mitochondrial DNA of *C. troglodytes* and two of the *C. esculenta* subspecies. Our results show that *C. troglodytes* and *C. esculenta* differ in their cytochrome b sequences by approximately 9%, indicating that they speciated at least 4.5 million years ago (assuming a molecular clock). We further show that *C. e. marginata* and *C. e. bagobo* differ in their cyt b sequences by 2.2%, suggesting that they split over a million years ago. The sizeable divergence between these subspecies supports the specific status of *C. e. marginata* and *C. e. bagobo*, since the two subspecies are more genetically distinct that are many other species of birds.
Populations of organisms on islands often diverge from mainland populations over evolutionary time. This divergence can lead to speciation. For example, the many islands of Southeast Asia and the South Pacific are home to an impressive radiation of swiftlets (Aves: Collocaliini), which are small, insectivorous birds. Determination of species limits in swiftlets has been difficult because of the extreme morphological similarity of many swiftlets populations (e.g. Mayr 1937). Molecular genetic data have the potential to reveal differences not apparent from morphological data alone. In this paper, we use molecular data to investigate species limits of swiftlets in the genus *Collocalia* from the Philippine Islands.

Table 1. Distribution of Philippine *Collocalia* species and subspecies*.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collocalia troglodytes</td>
<td>Banton, Bohol, Catanduanes, Cebu, Dinagat, Gigantes, Guimaras, Leyte Luzon,</td>
</tr>
<tr>
<td></td>
<td>Marinduque, Masbate, Mindanao Mindoro, Negros, Palawan, Panay Romblon,</td>
</tr>
<tr>
<td></td>
<td>Samar, Siargao, Sibuyan, Siquijor, Ticao</td>
</tr>
<tr>
<td>Collocalia esculenta bagobo</td>
<td>Bongao, Minadano, Mindoro</td>
</tr>
<tr>
<td>Collocalia esculenta isonota</td>
<td>Northern Luzon</td>
</tr>
<tr>
<td>Collocalia esculenta marginata</td>
<td>Banton, Bohol, Camiguin Sur, Cebu, Dinagat, Guimaras, Leyte, Central Luzon,</td>
</tr>
<tr>
<td></td>
<td>Mactan, Masbate, Mindoro, Negros, Panay, Polillo, Romblon, Samar, Siargao,</td>
</tr>
<tr>
<td></td>
<td>Sibuyan, Tablas</td>
</tr>
<tr>
<td>Collocalia esculenta septentrionalis</td>
<td>Babuyan Claro, Calayan, Camiguin Norte, Fuga</td>
</tr>
<tr>
<td>Collocalia esculenta undescribed</td>
<td>Palawan</td>
</tr>
</tbody>
</table>

*adapted from Dickinson 1989b

Swiftlets are small-bodied representatives of the family Apodidae. Members of the genus *Aerodramus* (22 species) nest in caves and navigate using a crude form of echolocation (Chantler and Driessens 1995, Lee et al. 1996); six species of *Aerodramus* occur in the Philippines (Dickinson 1989a). In contrast, members of the genus
Collocalia, which do not echolocate, nest near the entrances of caves or under rock overhangs and man-made structures, such as houses (Chantler and Driessens 1995). Two of the three recognized species of Collocalia occur in the Philippines. The third species, *C. linchi*, is primarily found in Indonesia. One of the two Philippine species, *C. troglodytes*, is an endemic with no described subspecific variation; it is distributed on all of the large islands in the Philippines (Table 1).

The other species, *C. esculenta*, is found from the Andaman Islands, east through Indonesia, Malaysia and New Guinea, to New Caledonia. This widespread species, which is divided into 31 subspecies (Chantler and Driessens 1995), occurs as far north as the Philippines, which is home to four endemic subspecies: *C. esculenta bagobo*, *C. esculenta isonota*, *C. esculenta marginata*, and *C. esculenta septentrionalis* (Dickinson 1989b). Another undescribed form of *C. esculenta* is endemic to Palawan Island. The species status of the Philippine forms of *C. esculenta* has been debated for years, with some authors recognizing marginata (Hackisuka 1934, Sibley and Monroe 1990) and isonota (McGregor 1909) as species (reviewed by Dickinson 1989b) by themselves.

For this study, we generated sequences from the mitochondrial cytochrome *b* gene to assess phylogenetic relationships of the two Philippine *Collocalia* (*troglodytes* and *esculenta*) in order to establish species limits. We used genetic divergences to estimate the timing of speciation events in *Collocalia*. We also assessed genetic variation for two of the four Philippine subspecies of *C. esculenta*: *C. esculenta bagobo* and *C. esculenta marginata*. We were unable to study the other two subspecies because of a lack of suitable tissue for genetic analysis.

Methods

We extracted DNA from tissues of *Collocalia troglodytes* (one individual from Sibuyan), *C. esculenta bagobo* (two individuals from Mindanao), and *C. esculenta marginata* (two individuals from Sibuyan) according to the protocol of Johnson and Clayton (in review). We also extracted DNA from representatives of 13 other swift and swiftlet species including *C. esculenta cyanoptila*, *C. linchi*, and 7 species of *Aerodramus*. Using PCR, we amplified most (1,037 bp) of the mitochondrial cytochrome *b* gene for these samples. We sequenced these PCR products and aligned them using the methods described in Johnson and Clayton (2000). We reconstructed phylogenies using parsimony and PAUP* (Swofford 1999).

We used 10 random sequence addition replicates with TBR branch swapping with equal weighting of characters. We performed bootstrap analyses (1,000 replicates) to assess support for various branches of the tree (Felsenstein 1985). We also compared genetic distances between species, subspecies, and individuals to estimate the timescale of speciation and evaluate species limits in Philippine swiftlets.
Figure 1. Phylogeny for swifts and swiftlets derived from unordered parsimony of cytochrome b sequences (1,037 base pairs), with Chaetura used as an outgroup (1 tree, length = 582, consistency index = 0.644, retention index = 0.796). The C. linchi clade is based on the 406 bp of Lee et al. (1996). Branch lengths are proportional to reconstructed changes under ACCTRAN optimization. Numbers on branches indicate percent bootstrap support from 1,000 replicates. Unlabelled nodes received less than 50% bootstrap support.
Results

The phylogeny shown in Figure 1 is largely congruent with that of Lee et al. (1996), which was based on cyt b sequences only about a third as long as those generated for this paper. Collocalia is clearly monophyletic (96% bootstrap support), as is Aerodramus (97%). In addition, as Lee et al. (1996) showed, the two swiftlet genera may not be sister taxa, although support for this conclusion is weak (54%). Swiftlet monophyly also cannot be rejected by the Templeton (1983) test ($P = 0.74$). Additional sequencing of swifts could help resolve the question of overall swiftlet monophyly.

Within Collocalia, C. troglodytes is considerably divergent from C. esculenta (average 9.0% sequence divergence). C. linchi is sister to C. esculenta and differs from it by 6.0% sequence divergence. Individuals from the same species and subspecies form monophyletic groups. With our limited sample of Collocalia esculenta subspecies, the two Philippine subspecies (C. e. marginata and C. e. bagobo) group together with high bootstrap support (Fig. 1). These two subspecies average 4.0% sequence divergence from C.e.cyanoptila. The divergence between C.e. marginata and C. e. bagobo is 2.2%. In contrast, the average divergence between individuals within subspecies of Collocalia is only 0.18%.

Discussion

DNA sequence data can help resolve the phylogeny for a group of species, aid in determining species boundaries, and provide an estimate of the timing of speciation events. Sequences from the mitochondrial cytochrome b gene show that the two non-echolocating species of Philippine swiftlets do indeed fall within Collocalia, being distinct from echolocating Aerodramus. Genetic divergence between Collocalia troglodytes and the various subspecies of C. esculenta suggests that these two lineages diverged from each other over 4.5 million years ago, assuming a molecular clock calibration of 2% per million years for mitochondrial DNA (Klicka and Zink 1997). Sequences of additional subspecies of Collocalia are needed to evaluate a geographic scenario for early divergences within Collocalia.

Dickinson (1989b) recognized four Philippine subspecies of Collocalia esculenta. Within C. esculenta, we identified lineages from mitochondrial DNA sequences that correspond to subspecies boundaries. The levels of sequence divergence between subspecies of Collocalia are relatively high, similar to or exceeding mitochondrial divergences between species in many other groups of birds. Within the Philippines, we sampled C. e. bagobo and C. e. marginata, and these two lineages differ by 2.2% sequence divergence. Using the molecular clock calibration, these two subspecies have been genetically isolated for approximately...
1.1 million years, which is a very long time for speciation to occur. The monophyly of individuals within each of these subspecies, together with their high divergence, suggests that these two groups should be considered distinct species: *Collocalia bagobo* and *C. marginata*.

While we are unable to evaluate the species status on the basis of genetic information for *C. esculenta septentrionalis*, *C. e. isonata*, and the undescribed Palawan Island form, it is possible that these forms will also show genetic diversification approaching or exceeding that between *C. bagobo* and *C. marginata*. Our results raise the total number of *Collocalia* species to five, three of which are endemic to the Philippines. It will be interesting to acquire and sequence tissue from the remaining Philippine *C. esculenta* subspecies (Table 1) to further resolve the taxonomy of this difficult, albeit interesting group of birds. Given the extreme morphological similarity of many swiftlet species and the relatively high levels of genetic divergence between subspecies, many more cryptic swiftlet species are likely to exist in the numerous islands of Southeast Asia.

Acknowledgements

The Field Museum of Natural History provided tissue samples for this work. We thank the DNA Sequencing Facility at the University of Utah, supported in part by NCI grant 5p30CA42014. This was supported by NSF-CAREER award DEB-9703003 and NERC grant GR319241 to DHC.

References

Hachisuka, M. 1934. The birds of the Philippine Islands with notes on the mammal fauna, 2 (part 3). Witherby. London.

