Header

Co-evolutionary Ecology & Conservation of
Darwin's Finches & Parasites

 

Figure 1.  Darwin's Finches and ectoparasites:  a) Adult fly (Philornis sp.), parasitic stage is the larvae; b) Bird louse (Brueelia sp.); c) Feather mite (Mesalgoides sp.); d) Small ground finch (Geospiza fuliginosa); e) Medium ground finch (G. fortis) – in shaded circle - is focus of most of our work; f) Large ground finch (G. magnirostris); g) Large cactus finch (G. conirostris); h) Common cactus finch (G. scandens); i) Sharp-beaked ground finch, (G. difficilis); j) Woodpecker finch (Cactospiza pallida); k) Small tree finch (Cam. parvulus); l) Large tree finch (Cam. psittacula); m) Vegetarian finch (Platyspiza crassirostris); n) “central islands” Warbler finch (Certhidea olivacea); o) “outer islands” Warbler finch (Cer. fusca).

Figure3

This project, which is based in Utah and the Galapagos Islands, is at the interface of co-evolutionary ecology, immunology, behavior, and conservation biology.  Although Darwin’s Finches are one of the most famous examples of adaptive radiation (Figure 1), we know little about the role of parasites in their ecology, behavior and evolution.  Unfortunately, finch populations have recently come under serious threat from the introduced tropical nest fly Philornis downsi.  A better understanding of this parasite is urgently needed because of the danger it poses to these iconic birds.  The overriding goals of this project are: 1) to conduct rigorous tests of the impact of P. downsi and other parasites on Darwin's Finches, and 2) to determine the ability of the finches to defend themselves against parasites.  The project focuses on interactions between P. downsi and the Medium ground finch (Geospiza fortis) on Santa Cruz Island; however, we are also studying interactions between other species of finches and their ectoparasite communities (Figure 1)We hope this work will help conservation biologists protect Darwin's Finches from invasive parasites and pathogens in the future.

Publications that have resulted from the project include the following:

Skinner, M. A., C. Gurerrero-Bosagna, Md M. Haque, E. E. Nilsson, J. A. H. Koop, Sarah A. Knutie and D. H. Clayton. 2014. Epigenetics and the evolution of Darwin's finches. Genome Biology and Evolution 6 1972-1989. PDF

Knutie, S.A., S.M. McNew, A.W. Bartlow, D.A. Vargas, D.H. Clayton. 2014 Darwin’s finches combat introduced nest parasites with fumigated cotton. Current Biology 24(9):R355–R356DOI: http://dx.doi.org/10.1016/j.cub.2014.03.058 PDF

Koop, J. A. H., C. Le Bohec and D. H. Clayton.  2013.  Dry year does not reduce invasive parasitic fly prevalence or abundance in Darwin’s finch nests.   Reports in Parasitology 3: 11–17. PDF

Koop, J. A. H., J. P. Owen, S. A. Knutie, M. A. Aguilar and D. H. Clayton.  2013.  Experimental demonstration of a parasite-induced immune response in wild birds:  Darwin’s finches and introduced nest flies.  Ecology and Evolution. doi: 10.1002/ece3.651PDF

Knutie, S. A., J. A. H. Koop, S. S. French and D. H. Clayton.  2013. Experimental test of the effect of introduced hematophagous flies on the corticosterone levels of breeding Darwin’s finches.  General and Comparative Endocrinology 193: 68-71. PDF

Villa, S. M., Le Bohec, C., Koop, J. A. H., Proctor, H. D., and D. H. Clayton. 2013. Diversity of feather mites (Acari: Astigmata) on Darwin's Finches.  J. Parasitology.PDF

Koop, J. A. H., S. K. Huber, S. M. Laverty and D. H. Clayton.  2011.   Experimental demonstration of the fitness consequences of an introduced parasite of Darwin's Finches. PLoS ONE 6: e19706. PDF

Owen, J.P., A. C. Nelson and D. H. Clayton.  2010.  Ecological immunology of bird-ectoparasite systems.  Trends in Parasitology 26: 530-539 (and cover).PDF

Huber, S. K., J. P. Owen, A. H. Koop, M. O. King, P. R. Grant, B. R. Grant, and D. H. Clayton. 2010. Ecoimmunity in Darwin's finches: Invasive parasites trigger acquired immunity in the medium ground finch (Geospiza fortis). PLoS One 5: e8605.PDF